Spectrum of the ∂-neumann Laplacian on Polydiscs

نویسنده

  • SIQI FU
چکیده

The spectrum of the ∂-Neumann Laplacian on a polydisc in C is explicitly computed. The calculation exhibits that the spectrum consists of eigenvalues, some of which, in particular the smallest ones, are of infinite multiplicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem

This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.

متن کامل

Laplacian Energy of a Fuzzy Graph

A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...

متن کامل

[hal-00860318, v1] Magnetic Neumann Laplacian on a sharp cone

This paper is devoted to the spectral analysis of the Laplacian with constant magnetic field on a cone of aperture α and Neumann boundary condition. We analyze the influence of the orientation of the magnetic field. In particular, for any orientation of the magnetic field, we prove the existence of discrete spectrum below the essential spectrum in the limit α → 0 and establish a full asymptotic...

متن کامل

Normalized laplacian spectrum of two new types of join graphs

‎Let $G$ be a graph without an isolated vertex‎, ‎the normalized Laplacian matrix $tilde{mathcal{L}}(G)$‎ ‎is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$‎, where ‎$mathcal{D}$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎G‎$‎‎. ‎The eigenvalues of‎ $tilde{mathcal{L}}(G)$ are ‎called as ‎the ‎normalized Laplacian eigenva...

متن کامل

Outer Approximation of the Spectrum of a Fractal Laplacian

We present a new method to approximate the Neumann spectrum of a Laplacian on a fractal K in the plane as a renormalized limit of the Neumann spectra of the standard Laplacian on a sequence of domains that approximate K from the outside. The method allows a numerical approximation of eigenvalues and eigenfunctions for lower portions of the spectrum. We present experimental evidence that the met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006